interference scenarios, a SpaceCastTM satellite and an ExpresswayTM satellite are spaced 2° apart on the geostationary arc. The parameters for these two systems are given in Tables B-5 and B-6. The worst case scenarios are listed with their C/I values as scenarios #6 and #8 in Table B-2. The C/I results show that for Ku-band operations, ExpresswayTM and SpaceCastTM are compatible spaced 2° apart.

Scenario #5 is shown in Table B-11 as an example of how the C/I ratios for scenarios #5, 6, 7, and 8 are calculated.

Table B-1. C/I Ratios for Various V-Band Scenarios.

Interference Scenario	Interfer. E/S Trans. Ant. Diameter, Sidelobe Level	Interf. E/S Rec. Ant. Diameter	Desired E/S Trans. Ant. Diameter	Desired E/S Rec. Ant. Dia., Sidelobe Level	C/I, dB
1) SpaceCast TM interfer. with System-X	2.5 m, 29-25log(Theta)	0.45 m	2.5 m	0.45 m , 29-25log(Theta)	20.4
2) SpaceCast TM interfer. with Expressway TM	2.5 m , 29-25log(Theta)	2.5 m	2.5 m	2.5 m, 29-25log(Theta)	27.4
3) System-X interfer. with SpaceCast TM	2.5 m , 29-25log(Theta)	0.45 m	2.5 m	0.45 m , 29-25log(Theta)	20.4
4) Expressway TM interfer. with SpaceCast TM	2.5 m , 29-25log(Theta)	2.5	2.5 m	1.0 m , 29-25log(Theta)	32.3

Table B-2. C/I Ratios for Various Ku-Band Scenarios.

Interference Scenario	Interfer. E/S Trans. Ant., Sidelobe Level	Interf. E/S Rec. Ant. Diameter	Desired E/S Trans. Ant. Diameter	Desired E/S Rec. Ant. Dia., Sidelobe Level	C/I, dB
5) SpaceCast TM interfer. with System-Y	2.5 m , 29-25log(Theta)	1.0 m	5.0 m	2.5 m , 29-25log(Theta)	25.4
6) SpaceCast TM interfer. with Expressway TM system	2.5 m , 29-25log(Theta)	2.5 m	2.5 m	2.5 m , 29-25log(Theta)	15.4
7) System-Y interfering with SpaceCast TM	5.0 m , 29-25log(Theta)	2.5 m	2.5 m	1.0 m , 29-25log(Theta)	21.7 ^A
8) Expressway TM interfer. with SpaceCast TM	2.5 m , 29-25log(Theta)	2.5	2.5 m	1.0 m, 29-25log(Theta)	22.9

A. This is a single entry case: it is assumed that only one System-Y transponder with a bandwidth of approximately 30 MHz interferes with SpaceCast TM . But, if System-Y has several transponders which fill the entire 214 MHz bandwidth of the SpaceCast TM satellite, the C/I will decrease by about 8.5 dB.

<u>List of link parameters used in interference analyses</u>

Table B-3. Uplink Parameter List for V-band Interference Analysis

Uplink Parameter	SpaceCast TM	Expressway TM	System-X
Signal Frequency, GHz	48.7	48.7	48.7
$(\lambda \text{ in m})$	(0.006156)	(0.006156)	(0.006156)
Earth Sta. Trans. Pwr., W (dBW)	50 (17.0)	30 (14.8)	50 (17.0)
Earth Sta. HPA Pwr. Backoff, dB	2.5	3	2.5
Number of Carriers	1	1	1
Earth Sta. Transmitter Losses, dB	1.0	1.0	1.0
Earth Sta. Ant. Diam., m	2.5	2.5	2.5
Earth Sta. Trans. Ant. On-Axis Gain, dBi	59.5 (η=0.55)	59.5 (η=0.55)	59.5 (η=0.55)
Earth Sta. Ant. Off-Axis Gain	29-	29-	29-
Pattern, dBi	25log(Theta)	25log(Theta)	25log(Theta)
Satellite Max. Rec. Ant. Gain, dBi	58.0	52.0	58.0
Satellite Edge-of-Coverage Rec. Ant. Gain, dBi	55.0	49.0	55.0
Single Carrier Channel Bandwidth, MHz	300	300	300

Table B-4. Downlink Parameter List for V-band Interference Analysis

Downlink Parameter	SpaceCast TM	Expressway TM	System-X
Signal Frequency, GHz	41.0	41.0	41.0
$(\lambda \text{ in m})$	(.007312)	(.007312)	(.007312)
Satellite Trans. Pwr., W (dBW)	100 (20.0)	100 (20.0)	100 (20.0)
Satellite HPA Pwr. Backoff, dB	2	2	2
Number of Carriers	10	10	10
Satellite Transmitter Losses, dB	1.0	1.0	1.0
Satellite Max. Trans. Ant. Gain,	58.0	52.0	58.0
dBi			
Satellite Edge-of-Coverage Trans.	55.0	49.0	55.0
Ant. Gain, dBi			
Earth Sta. Ant. Diameter, m	0.45, 1.0, 2.5	2.5	0.45, 1.0, 2.5
Earth Sta. Rec. Ant. On-Axis	43.9, 50.8,	58.0	43.9, 50.8,
Gain, dBi	58.0 (η =0.65,	<u> </u>	58.0 (η =0.65,
	0.65, 0.55)		0.65, 0.55)
Earth Sta. Ant. Off-Axis Gain	29-	29-	29-
Pattern, dBi	25log(Theta)	25log(Theta)	25log(Theta)
Single Carrier Channel	300	300	300
Bandwidth, MHz			

Table B-5. Uplink Parameter List for Ku-band Interference Analysis

Uplink Parameter	SpaceCast TM	Expressway TM	System-Y
Signal Frequency, GHz	13.0	13.0	13.0
(λ in m)	(0.02306)	(0.02306)	(0.02306)
Earth Sta. Trans. Pwr., W (dBW)	100 (20.0)	100 (20.0)	50 (17.0)
Earth Sta. HPA Pwr. Backoff, dB	1.0	1.0	0
Number of Carriers	1	1	1
Earth Sta. Transmitter Losses, dB	0.3	0.3	0.3
Earth Sta. Ant. Diam., m	2.5	2.5	5
Earth Sta. Trans. Ant. On-Axis Gain, dBi	48.8 (η=0.65)	48.8	54.1 (η=0.55)
Earth Sta. Ant. Off-Axis Gain	29-	29-	29-
Pattern, dBi	25log(Theta)	25log(Theta)	25log(Theta)
Satellite Max. Rec. Ant. Gain, dBi	37.0	37.0	35
Satellite Edge-of-Coverage Rec. Ant. Gain, dBi	34.0	34.0	32
Single Carrier Bandwidth, MHz	214	240	30

Table B-6. Downlink Parameter List for Ku-band Interference Analysis

Downlink Parameter	SpaceCast TM	Expressway TM	System-Y
Signal Frequency, GHz	11.0	11.0	11.0
$(\lambda \text{ in m})$	(.02725)	(.02725)	(.02725)
Satellite Trans. Pwr., W (dBW)	150 (21.8)	25 (14.0)	50 (17.0)
Satellite HPA Pwr. Backoff, dB	0	0	0
Number of Carriers	1	1	1
Satellite Transmitter Losses, dB	0.6	0.5	0.5
Satellite Max. Trans. Ant. Gain,	37.0	37.0	35
dBi			
Satellite Edge-of-Coverage Trans.	34.0	34.0	32
Ant. Gain, dBi			
Earth Sta. Ant. Diameter, m	1.0, 2.5	2.5	2.5
Earth Sta. Rec. Ant. On-Axis	39.7, 47.3	47.3	$47.3 (\eta=0.65)$
Gain, dBi	$(\eta=0.70, 0.65)$		
Earth Sta. Ant. Off-Axis Gain	29-	29-	29-
Pattern, dBi	25log(Theta)	25log(Theta)	25log(Theta)
Single Carrier Bandwidth, MHz	214	240	30

Interference analyses: typical calculations

Table B-7. V-band Interference Analysis: SpaceCast™ Interfering With System-X, Scenario #1 (2° separation)

Uplink Budget Item	Value	Unit
Interf. (SpaceCast TM) E/S TX Power	17.0	dBW
Interf. E/S HPA Backoff	-2.5	dB
Per Carrier Loss	-0.0	dB
Interf. E/S TX losses	-1.0	dB
Interf. E/S Ant. Trans. Gain toward X Sat.	20.4	dBi
EIRP toward X Sat.	33.9	dBW
Interfering Trans. BW Mismatch	0.0	dB
Space Loss(217.6) ^A + Atm. Loss (4.6)	-222.2	dB
Max. X Satellite Rec. Ant. Gain	58.0	dBi
(I) _{uplink}	-130.3	dBW
Desired (System-X) E/S TX Power	17.0	dBW
Desired E/S HPA Backoff	-2.5	dB
Per Carrier Loss	-0.0	dB
Desired E/S TX losses	-1.0	dB
Desired E/S Ant. Trans. Gain On- Axis (2.5 m, effic. = 0.55)	59.5	dBi
EIRP	73.0	dBW
Space Loss(217.6) ^A + Atm. Loss (4.6)	-222.2	dB
X Sat. Edge-of-Coverage Rec. Ant. Gain	55.0	dBi
(C) _{uplink}	-94.2	dBW
$(C/I)_{uplink} = (C)_{uplink} - (I)_{uplink}$	36.1	dB

Table B-7. V-band Interference Analysis: SpaceCast™ Interfering With System-X, Scenario #1 (2° separation) (cont'd)

Downlink Budget Item	Value	Unit
Interf. Satell. (SpaceCast TM) TX Pwr.	20.0	dBW
Interf. Satellite HPA Backoff	-2.0	dB
Per Carrier Loss	-10.0	dB
Interf. Satellite TX losses	-1.0	dB
Max. Interf. Satellite Trans. Ant. Gain	58.0	dBi
EIRP toward System-X E/S	65.0	dBW
Interfering Trans. BW Mismatch	0.0	dB
Space Loss(216.1) ^A + Atm. Loss (2.6)	-218.7	dB
SysX E/S Ant. Rec. Gain toward Interf. Satell.	20.4	dBi
(I) _{downlink}	-133.3	dBW
Desired X-Satellite TX Power	20.0	dBW
Desired X-Satellite HPA Backoff	-2.0	dB
Per Carrier Loss	-10.0	dB
Desired X-Satellite TX losses	-1.0	dB
Desired X-Satell. Edge-of-Coverage Trans. Ant. Gain	55.0	dBi
EIRP	62.0	dBW
Space Loss(216.1) ^A + Atm. Loss (2.6)	-218.7	dB
SysX E/S Ant. Rec. Gain On-Axis (0.45 m dia., effic. = 0.65)	43.9	dBi
(C) _{downlink}	-112.8	dBW
$(C/I)_{downlink} = (C)_{downlink} - (I)_{downlink}$	20.5	dB
$C/I = ((C/I)_{uplink}^{-1} + (C/I)_{downlink}^{-1})^{-1}$	20.4	dB

Table B-8. V-band Interference Analysis: SpaceCast™ Interfering With Expressway TM,
Scenario #2 (2° separation)

Uplink Budget Item	Value	Unit
Interf. (SpaceCast TM) E/S TX Power	17.0	dBW
Interf. E/S HPA Backoff	-2.5	dB
Per Carrier Loss	-0.0	dB
Interf. E/S TX losses	-1.0	dB
Interf. E/S Ant. Trans. Gain toward	20.4	dBi
Expressway TM Sat.		
EIRP toward Expressway TM Sat.	33.9	dBW
Interfering Trans. BW Mismatch	0.0	dB
Space Loss(217.6) ^A + Atm. Loss (4.6)	-222.2	dB
Max. Expressway TM Satellite Rec.	52.0	dBi
Ant. Gain		
(I) _{uplink}	-136.3	dBW
Desired(Expressway TM) E/S TX Pwr	14.8	dBW
Desired E/S HPA Backoff	-3.0	dB
Per Carrier Loss	-0.0	dB
Desired E/S TX losses	-1.0	dB
Desired E/S Ant. Trans. Gain On-	59.5	dBi
Axis		
EIRP	70.3	dBW
Space Loss(217.6) ^A + Atm. Loss (4.6)	-222.2	dB
Expressway TM Sat. Edge-of-Coverage	49.0	dBi
Rec. Ant. Gain		
(C) _{uplink}	-102.9	dBW
$(C/I)_{uplink} = (C)_{uplink} - (I)_{uplink}$	33.4	dB

A. Assuming 37,000 km slant range; other losses also assumed to be the same for the interfering signal and the desired signal.

Table B-8. V-band Interference Analysis: SpaceCast™ Interfering With Expressway , Scenario #2 (2° separation) (cont'd)

Downlink Budget Item	Value	Unit
Interf. Satell. (SpaceCast TM) TX Pwr.	20.0	dBW
Interf. Satellite HPA Backoff	-2.0	dB
Per Carrier Loss	-10.0	dB
Interf. Satellite TX losses	-1.0	dB
Max. Interf. Satellite Trans. Ant. Gain	58.0	dBi
EIRP toward Expressway TM E/S	65.0	dBW
Interfering Trans. BW Mismatch	0.0	dB
Space Loss(216.1) ^A + Atm. Loss (2.6)	-218.7	dB
Expressway TM E/S Ant. Rec. Gain toward Interf. Satell.	20.4	dBi
(I) _{downlink}	-133.3	dBW
Desired(Expressway TM) Sat. TX Pwr.	20.0	dBW
Desired Satellite HPA Bkoff.	-2.0	dB
Per Carrier Loss	-10.0	dB
Desired Satellite TX losses	-1.0	dB
Desired Satellite Edge-of-Coverage Trans. Ant. Gain	49.0	đBi
EIRP	56.0	dBW
Space Loss(216.1) ^A + Atm. Loss (2.6)	-218.7	dB
Expressway TM E/S Ant. Rec. Gain On-Axis	58.0	dBi
(C) _{downlink}	-104.7	dBW
$(C/I)_{downlink} = (C)_{downlink} - (I)_{downlink}$	28.6	dB
$C/I = ((C/I)_{uplink}^{-1} + (C/I)_{downlink}^{-1})^{-1}$	27.4	dB

Table B-9. V-band Interference Analysis: System-X Interfering With SpaceCast™, Scenario #3 (2° separation)

Scenario #5 (2	Separation,	
Uplink Budget Item	Value	Unit
Interf. (System-X) E/S TX Power	17.0	dBW
Interf. E/S HPA Backoff	-2.5	dB
Per Carrier Loss	-0.0	dB
Interf. E/S TX losses	-1.0	dB
Interf. E/S Ant. Trans. Gain toward	20.4	dBi
SpaceCast TM Sat.		
EIRP toward SpaceCast TM Sat.	33.9	dBW
Interfering Trans. BW Mismatch	0.0	dB
Space Loss(217.6) ^A + Atm. Loss (4.6)	-222.2	dB
Max. SpaceCast TM Satellite Rec. Ant. Gain	58.0	dBi
(I) _{uplink}	-130.3	dBW
Desired (SpaceCast TM) E/S TX Power	17.0	dBW
Desired E/S HPA Backoff	-2.5	dB
Per Carrier Loss	-0.0	dB
Desired E/S TX losses	-1.0	dB
Desired E/S Ant. Trans. Gain On- Axis (2.5 m, effic. = 0.55)	59.5	dBi
EIRP	73.0	dBW
Space Loss(217.6) ^A + Atm. Loss (4.6)	-222.2	dB
SpaceCast TM Sat. Edge-of-Coverage Rec. Ant. Gain	55.0	dBi
(C) _{uplink}	-94.2	dBW
$(C/I)_{uplink} = (C)_{uplink} - (I)_{uplink}$	36.1	dB

A. Assuming 37,000 km slant range; other losses also assumed to be the same for the interfering signal and the desired signal.

Table B-9. V-band Interference Analysis: System-X Interfering With SpaceCast™, Scenario #3 (2° separation) (cont'd)

Downlink Budget Item	Value	Unit
Interf. Satell. (System-X) TX Pwr.	20.0	dBW
Interf. Satellite HPA Backoff	-2.0	dB
Per Carrier Loss	-10.0	dB
Interf. Satellite TX losses	-1.0	dB
Max. Interf. Satellite Trans. Ant. Gain	58.0	dBi
EIRP toward SpaceCast TM E/S	65.0	dBW
Interfering Trans. BW Mismatch	0.0	dB
Space Loss(216.1) ^A + Atm. Loss (2.6)	-218.7	dB
SpaceCast TM E/S Ant. Rec. Gain toward Interf. Satell.	20.4	dBi
(I) _{downlink}	-133.3	dBW
Desired (SpaceCast TM) Satellite TX Power	20.0	dBW
Desired Satellite HPA Backoff	-2.0	dΒ
Per Carrier Loss	-10.0	dB
Desired Satellite TX losses	-1.0	dB
Desired Satell. Edge-of-Coverage Trans. Ant. Gain	55.0	dBi
EIRP	62.0	dBW
Space Loss(216.1) ^A + Atm. Loss (2.6)	-218.7	dB
SpaceCast TM E/S Ant. Rec. Gain On-Axis (0.45 m dia., effic. = 0.65)	43.9	dBi
(C) _{downlink}	-112.8	dBW
$(C/I)_{downlink} = (C)_{downlink} - (I)_{downlink}$	20.5	dB
$C/I = ((C/I)_{uplink}^{-1} + (C/I)_{downlink}^{-1})^{-1}$	20.4	dB

Table B-10. V-band Interference Analysis: Expressway[™] Interfering With SpaceCast[™], Scenario #4 (2° separation)

Uplink Budget Item	Value	Unit
Interf. (Expressway TM) E/S TX	14.8	dBW
Power		
Interf. E/S HPA Backoff	-3.0	dB
Per Carrier Loss	-0.0	dB
Interf. E/S TX losses	-1.0	dB
Interf. E/S Ant. Trans. Gain toward	20.4	dBi
SpaceCast TM Sat.		
EIRP toward SpaceCast TM Sat.	31.2	dBW
Interfering Trans. BW Mismatch	-0.0	dB
Space Loss(217.6) ^A + Atm. Loss (4.6)	-222.2	dB
Max. SpaceCast TM Satellite Rec. Ant. Gain	58.0	dBi
(I) _{uplink}	-133.0	dBW
Desired (SpaceCast TM) E/S TX Power	17.0	dBW
Desired E/S HPA Backoff	-2.5	dB
Per Carrier Loss	-0.0	dB
Desired E/S TX losses	-1.0	dB
Desired E/S Ant. Trans. Gain On- Axis (2.5 m, effic. = 0.55)	59.5	dBi
EIRP	73.0	dBW
Space Loss(217.6) ^A + Atm. Loss (4.6)	-222.2	dB
SpaceCast TM Sat. Edge-of-Coverage Rec. Ant. Gain	55.0	dBi
(C) _{uplink}	-94.2	dBW
$(C/I)_{uplink} = (C)_{uplink} - (I)_{uplink}$	38.8	dB

A. Assuming 37,000 km slant range; other losses also assumed to be the same for the interfering signal and the desired signal.

Table B-10. V-band Interference Analysis: Expressway[™] Interfering With SpaceCast[™], Scenario #4 (2° separation) (cont'd)

Downlink Budget Item	Value	Unit
Interf. Satell. (Expressway TM) TX	20.0	dBW
Pwr.		
Interf. Satellite HPA Backoff	<i>-</i> 2.0	dB
Per Carrier Loss	-10.0	dB
Interf. Satellite TX losses	-1.0	dB
Max. Interf. Satellite Trans. Ant. Gain	52.0	dBi
EIRP toward SpaceCast TM E/S	59.0	dBW
Interfering Trans. BW Mismatch	-0.0	dB
Space Loss(216.1) ^A + Atm. Loss (2.6)	-218.7	dB
SpaceCast TM E/S Ant. Rec. Gain	20.4	dBi
toward Interf. Satell.		
(I) _{downlink}	-139.3	dBW
Desired (SpaceCast TM) Satellite TX Power	20.0	dBW
Desired Satellite HPA Backoff	-2.0	dB
Per Carrier Loss	-10.0	dB
Desired Satellite TX losses	-1.0	dB
Desired Satell. Edge-of-Coverage	55.0	dBi
Trans. Ant. Gain		122.
EIRP	62.0	dBW
Space Loss(216.1) ^A + Atm. Loss (2.6)	-218.7	dB
SpaceCast TM E/S Ant. Rec. Gain On-	50.8	dBi
Axis (1.0 m dia. B , effic. = 0.65)		
(C) _{downlink}	-105.9	dBW
$(C/I)_{downlink} = (C)_{downlink} - (I)_{downlink}$	33.4	dB
$C/I = ((C/I)_{uplink}^{-1} + (C/I)_{downlink}^{-1})^{-1}$	32.3	dB

- A. Assuming 37,000 km slant range; other losses also assumed to be the same for the interfering signal and the desired signal.
- B. Because a SpaceCastTM earth station's receiver bandwidth varies as a function of its antenna size, the 1.0-m antenna receiver is the worst case, not the 0.45-m antenna receiver.

Table B-11. Ku-band Interference Analysis: SpaceCast™ Interfering With System-Y, Scenario #5 (2° separation)

Uplink Budget Item	Value	Umit
Interf. (SpaceCast TM) E/S TX Power	20.0	dBW
Interf. E/S HPA Backoff	-1.0	dB
Per Carrier Loss	0.0	dB
Interf. E/S TX losses	-0.3	dB
Interf. E/S Ant. Trans. Gain toward Y Sat.	20.4	dBi
EIRP toward Y Sat.	39.1	dBW
Interfering Trans. BW Mismatch	-8.5	dB
Space Loss (206.1) ^A + Atm. Loss (0.5)	-206.6	dB
Max. Y Satellite Rec. Ant. Gain	35.0	dBi
(I) _{uplink}	-141.0	dBW
Desired (System-Y) E/S TX Power	17.0	dBW
Desired E/S HPA Backoff	0.0	dB
Per Carrier Loss	0.0	dB
Desired E/S TX losses	-0.3	dB
Desired E/S Ant. Trans. Gain On- Axis (5 m dia., effic. = 0.55)	54.1	dBi
EIRP	70.8	dBW
Space Loss (206.1) ^A + Atm. Loss (0.5)	-206.6	dB
Y Sat. Edge-of-Coverage Rec. Ant. Gain	32.0	dBi
(C) _{uplink}	-103.8	dBW
$(C/I)_{uplink} = (C)_{uplink} - (I)_{uplink}$	37.2	dB

Table B-11. Ku-band Interference Analysis: SpaceCast™ Interfering With System-Y, Scenario #5 (2° separation) (cont'd)

Downlink Budget Item	Value	Unit
Interf. Satell. (SpaceCast TM) TX Pwr.	21.8	dBW
Interf. Satellite HPA Backoff	-0.0	dB
Per Carrier Loss	-0.0	dB
Interf. Satellite TX losses	-0.6	dB
Max. Interf. Satellite Trans. Ant. Gain	37.0	dBi
EIRP toward System-Y E/S	58.2	dBW
Interfering Trans. BW Mismatch	-8.5	dB
Space Loss (204.6) ^A + Atm. Loss (0.2)	-204.8	dB
SysY E/S Ant. Rec. Gain toward	20.4	dBi
Interf. Satell.		
(I) _{downlink}	-134.7	dBW
Desired Y-Satellite TX Power	17.0	dBW
Desired Y-Satellite HPA Backoff	-0.0	dB
Per Carrier Loss	-0.0	dB
Desired Y-Satellite TX losses	-0.5	dB
Desired Y-Satell. Edge-of-Coverage	32.0	dBi
Trans. Ant. Gain		
EIRP	48.5	dBW
Space Loss (204.6) ^A + Atm. Loss (0.2)	-204.8	dB
SysY E/S Ant. Rec. Gain On-Axis	47.3	dBi
(2.5 m dia., effic. = 0.65)		<u> </u>
(C) _{downlink}	-109.0	dBW
$(C/I)_{downlink} = (C)_{downlink} - (I)_{downlink}$	25.7	dB
$C/I = ((C/I)_{uplink}^{-1} + (C/I)_{downlink}^{-1})^{-1}$	25.4	dB

APPENDIX C: ANTENNA COVERAGE

Figure C-1. V-band Receive/Transmit Satellite Antenna Gain Contours. For both RHCP and LHCP. Maximum gain = 58 dBi, maximum G/T = 29.4 dB/K.

Figure C-2. Ku-Band Receive/Transmit Elliptical Beam Contours. For both RHCP and LHCP. Maximum gain = 37 dBi, maximum G/T = 10.9 dB/K.

Each 0.15 deg beam is steerable within a 0.30 deg circle. Map shows 0.30 deg coverage circles. Box shows 0.15 deg beam inside a 0.30 deg beam. The 0.15 deg beams will be deployed over a maximum of 40 uplink and 40 downlink areas within the coverage shown.

Figure C-3. V-band Satellite Coverage at 39° W

Figure C-4. Ku-band Satellite Coverage at 39° W

Figure C-5. V-band Satellite Coverage at 60° W (Eastern U.S. Service)

Figure C-6. Ku-band Satellite Coverage at 60° W (Eastern U.S. Service)

Each 0.15 deg beam is steerable within a 0.30 deg circle. Map shows 0.30 deg coverage circles. Box shows 0.15 deg beam inside a 0.30 deg beam. The 0.15 deg beams will be deployed over a maximum of 40 uplink and 40 downlink areas within the coverage shown.

Figure C-7. V-band Satellite Coverage at 125° W (Western U.S. Service)

Figure C-8. Ku-band Satellite Coverage at 125° W (Western U.S. Service)

Figure C-9. V-band Satellite Coverage at 155° E

Figure C-10. Ku-band Satellite Coverage at 155° E